Background and objective With the steady advancement of computer-assisted surgical techniques, the importance of assessing and researching technology related to total knee arthroplasty (TKA) procedures has increased. Augmented reality (AR), a recently proposed next-generation technology, is expected to enhance the precision of orthopedic surgery by providing a more efficient and cost-effective approach. However, the accuracy of image-based AR in TKA surgery has not been established. Therefore, this study aimed to determine whether accurate bone resection can be achieved in TKA surgery using image-based AR. Methods In this study, we replaced traditional CT imaging and reconstructions for creating a bone 3D modelby direct 3D scanning of the femur and tibia. The preoperative planning involved identifying anatomical landmarks and determining the surgical details. During surgery, markers were employed to create a local coordinate system for an AR-assisted surgical system using a Polaris camera. This approach helped minimizediscrepancies between the 3D model and actual positioning, ensuring accurate alignment. Results The AR-assisted surgery using the image method resulted in fewer errors [average error: 0.32 mm; standard deviation (SD): 0.143] between the bone resection depth of the preoperative surgical plan and the bone model test results. Conclusions Our findings demonstrated the accuracy of bone resectioning by using image-based AR-assisted navigation for TKA surgery. Image-based AR-assisted navigation in TKA surgery is a valuable tool not only for enhancing accuracy by using smart glasses and sensors but also for improving the efficiency of the procedure. Therefore, we anticipate that image-based AR-assisted navigation in TKA surgery will gain wideacceptance in practice.
Read full abstract