Abstract
The incidence of skin cancer is rising globally, posing a significant public health threat. An early and accurate diagnosis is crucial for patient prognoses. However, discriminating between malignant melanoma and benign lesions, such as nevi and keratoses, remains a challenging task due to their visual similarities. Image-based recognition systems offer a promising solution to aid dermatologists and potentially reduce unnecessary biopsies. This research investigated the performance of four unified convolutional neural networks, namely, YOLOv3, YOLOv4, YOLOv5, and YOLOv7, in classifying skin lesions. Each model was trained on a benchmark dataset, and the obtained performances were compared based on lesion localization, classification accuracy, and inference time. In particular, YOLOv7 achieved superior performance with an Intersection over Union (IoU) of 86.3%, a mean Average Precision (mAP) of 75.4%, an F1-measure of 80%, and an inference time of 0.32 s per image. These findings demonstrated the potential of YOLOv7 as a valuable tool for aiding dermatologists in early skin cancer diagnosis and potentially reducing unnecessary biopsies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.