Abstract

This study proposes the utilization of an optical fiber vibration sensor for detecting the superposition of extremely close frequencies in vibration signals. Integration of deep neural networks (DNN) proves to be meaningful and efficient, eliminating the need for signal analysis methods involving complex mathematical calculations and longer computation times. Simulation results of the proposed model demonstrate the remarkable capability to accurately distinguish frequencies below 1 Hz. This underscores the effectiveness of the proposed image-based vibration signal recognition system embedded in DNN as a streamlined yet highly accurate method for vibration signal detection, applicable across various vibration sensors. Both simulation and experimental evaluations substantiate the practical applicability of this integrated approach, thereby enhancing electric motor vibration monitoring techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.