One explanation for the movement of sexually receptive females to clusters of male territories in lek-breeding species is that larger clusters provide females with higher-quality mating partners, as would be the case if males were distributed between leks in an ideal free distribution for unequal competitors. This ideal free model of lek evolution predicts that male competitive ability and mating success will be greater on larger leks than smaller ones. I tested these predictions by comparing the mean number of males on 19 different Uganda kob leks with the sex ratio, the availability of oestrous females, mating rates, male fighting rates and male turnover rates. Contrary to the predictions of the model, numbers of females, receptive females and fights increased proportionally with lek size, but were no greater per male on larger leks. Multivariate analyses of male and female numbers on leks showed that male numbers were associated with female numbers, female numbers in the past, and a variety of habitat variables which may have related to the costs of holding a lek territory, but female numbers varied only with male numbers and female density in the area. These data do not provide evidence that females gain access to superior males by mating on larger leks, though they do support the possibility that lekking may be promoted by a tendency for larger leks to retain females longer.