Abstract

Cichlid fish ( Aequidens curviceps) distributed themselves and allocated their foraging time between two drift food patches in close approximation to the patch profitability ratio, as predicted by the ideal free distribution theory. The fish thereby achieved similar average feeding rates in the two patches, in two of three patch profitability ratio experiments. However, one major assumption of the ideal free model was violated, since individual fish differed in their competitive abilities for limited food resources, which resulted in unequal payoffs among individuals within each patch. Individual variation in feeding rates, and thus in competitive ability, was not related to despotism, but perhaps rather to individual differences in perceptual ability and in the ability to learn which patch was currently the more profitable. The strategy used by the fish to assess patch profitability included sampling available patches. However, individual fish switched (sampled) patches with varying frequency. Sampling had an associated cost, since high-frequency switchers had lower feeding rates on average than low-frequency switchers. Differences in foraging strategy among the fish therefore contributed to the observed in-equality in individual payoffs within patches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call