This study presents an experimental analysis of a turbocharger with semi-floating ring bearings, focusing on hysteresis in subsynchronous vibrations. Four automotive oils (SAE 0W-20, SAE 0W-30, SAE 5W-30, SAE 5W-40) were tested across six oil inlet temperatures from 20 °C to 120 °C during ramp-up and ramp-down cycles to examine the effects of lubricant viscosity and temperature on rotor dynamics. Hysteresis and bifurcation points were observed at distinct rotational speeds in both directions, with subsynchronous components providing insights into rotor–lubrication interactions. This study applies the concept of hysteresis loop width for turbocharger rotors, highlighting its nonlinear dependence on oil temperature, an unexpected and unexplained phenomenon. Additionally, the results suggest that vibration sensors could provide real-time feedback on oil supply conditions, offering potential enhancements for turbochargers and other rotating machinery.
Read full abstract