Membrane depolarization triggers gene expression through voltage-gated calcium channels (VGCC) in a process called Excitation-transcription (ET) coupling. Mutations in the channel subunits α11.2, or β2d, are associated with neurodevelopmental disorders such as ASD. Here, we found that two mutations S143F and G113S within the rat Cavβ2a corresponding to autistic related mutations Cavβ2dS197F and Cavβ2dG167S in the human Cavβ2d, activate ET-coupling via the RAS/ERK/CREB pathway. Membrane depolarization of HEK293 cells co-expressing α11.2 and α2δ with Cavβ2aS143F or Cavβ2aG113S triggers constitutive transcriptional activation, which is correlated with facilitated channel activity. Similar to the Timothy-associated autistic mutation α11.2G406R, constitutive gene activation is attributed to a hyperpolarizing shift in the activation kinetics of Cav1.2. Pulldown of RasGRF2 and RhoGEF by wt and the Cavβ2a autistic mutants is consistent with Cavβ2/Ras activation in ET coupling and implicates Rho signaling as yet another molecular pathway activated by Cavα11.2/Cavβ2 . Facilitated spontaneous channel activity preceding enhanced gene activation via the Ras/ERK/CREB pathway, appears a general molecular mechanism for Ca2+ channel mediated ASD and other neurodevelopmental disorders.
Read full abstract