Abstract

Cannabigerol (CBG), a non-psychotropic phytocannabinoid and a precursor of ∆9 -tetrahydrocannabinol and cannabidiol, has been suggested to act as an analgesic. A previous study reported that CBG (10μM) blocks voltage-gated sodium (Nav ) currents in CNS neurons, although the underlying mechanism is not well understood. Genetic and functional studies have validated Nav 1.7 channels as an opportune target for analgesic drug development. The effects of CBG on Nav 1.7 channels, which may contribute to its analgesic properties, have not been previously investigated. To determine the effects of CBG on Nav channels, we used stably transfected HEK cells and primary dorsal root ganglion (DRG) neurons to characterize compound effects using experimental and computational techniques. These included patch-clamp, multielectrode array, and action potential modelling. CBG is a ~10-fold state-dependent Nav channel inhibitor (KI -KR : ~2-20 μM) with an average Hill-slope of ~2. We determined that, at lower concentrations, CBG predominantly blocks sodium Gmax and slows recovery from inactivation. However, as the concentration is increased, CBG also induces a hyperpolarizing shift in the half-voltage of inactivation. Our modelling and multielectrode array recordings suggest that CBG attenuates DRG excitability. Inhibition of Nav 1.7 channels in DRG neurons may underlie CBG-induced neuronal hypoexcitability. As most Nav 1.7 channels are inactivated at the resting membrane potential of DRG neurons, they are more likely to be inhibited by lower CBG concentrations, suggesting functional selectivity against Nav 1.7 channels, compared with other Nav channels (via Gmax block).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call