Abstract
SCN8A, encoding the voltage-gated sodium channel subunit NaV1.6, has been associated with a wide spectrum of neuropsychiatric disorders. Missense variants in SCN8A which increase the channel activity can cause a severe developmental and epileptic encephalopathy (DEE). One DEE variant (p.(Arg223Gly)) was described to cause a predominant loss-of-function (LOF) mechanism when expressed in neuroblastoma cells, which is not consistent with the genotype-phenotype correlations in this gene. To resolve this discrepancy and understand the pathophysiological mechanism of this variant, we performed comprehensive electrophysiological studies in both neuroblastoma cells and primary hippocampal neuronal cultures. Although we also found that p.(Arg223Gly) significantly decreased Na+ current density and enhanced fast inactivation compared to the wild type (WT) channel in transfected neuroblastoma cells (both LOF mechanisms), it also caused a strong hyperpolarizing shift of steady-state activation and accelerated the recovery from fast inactivation (both gain-of-function (GOF) mechanisms). In cultured neurons transfected with mutant vs. WT NaV1.6 channels, we found more depolarized resting membrane potentials and a decreased rheobase leading to enhanced action potential firing. We conclude that SCN8A p.(Arg223Gly) leads to a net GOF resulting in neuronal hyperexcitability and a higher firing rate, fitting with the central role of GOF mechanisms in DEE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.