An NMR imaging method was developed to estimate the rate of water movement in slow-release capsule matrices of pseudoephdrine HCl and hydroxypropyl cellulose (HPC). Test capsules were first placed in a USP method 2 (paddles, 50 rpm) dissolution apparatus. Each plug was removed from the dissolution medium at predetermined times, blotted dry, and placed within the magnetic field of a General Electric 400-MHz wide-bore NMR spectrometer equipped with a microimaging accessory. Images were recorded along the transverse plane of each plug. The water penetration rate was determined by comparison of the cut and weighed contour plots of the images acquired. After 1 hr, the plugs tamped to 200 N exhibited water penetration to the center, while only 45% of the drug was released. The percentage dry matrix was fitted to the Jost equation to obtain a diffusion coefficient of 4.15 x 10(-6) cm2/sec. NMR imaging is set forth as an important and practicable technique to investigate drug formulations. In the HPC matrix system of this study, the NMR imaging results convincingly revealed the rate of hydration front penetration not to be a rate-limiting step in the drug release process.
Read full abstract