Alkali soluble lignin present in rice straw hydrolysis residue (RSHR) is subjected to photocatalytic treatment to study its degradation rates and production of different value-added oxygenated organic compounds. TiO2 and ZnO are used as photocatalysts. ZnO could degrade lignin faster than TiO2 in pseudo-first order photocatalytic degradation. The maximum observed photocatalytic lignin degradation is 83.4% using 2 g/L ZnO dose with pseudo-first order rate constant 0.1386 h−1. Vanillin and 4-hydroxy benzaldehyde are the two important value-added products formed during photocatalysis. Both these compounds, themselves, are susceptible to photocatalytic degradation. Vanillin degradation followed pseudo-first order kinetics and the highest rate constant of 0.1415 h−1 is achieved using 2 g/L ZnO as photocatalyst. While the degradation kinetics of 4-hydroxy benzaldehyde is pseudo-first order with TiO2 and ZnO as a photocatalyst. Higher catalyst doses increased the reaction rate constant. With multiple reactions in operation, the concentration of both vanillin and 4-hydroxy benzaldehyde in the reaction mixture first increased, attained their maxima, and thereafter decreased. With 1 g/L TiO2 as a photocatalyst, the maximum attained vanillin concentration is 22.4 mg/L after 7 h photocatalysis. Maximum attained vanillin concentration, after 8 h photocatalysis, is significantly higher at 51.2 mg/L when 2 g/L ZnO is used as a catalyst. 4-Hydroxy benzaldehyde is produced in lesser amounts. Its maximum observed concentration in the reaction mixture is 20.4 mg/L, obtained with 1.5 g/L TiO2 after 10 h photocatalysis.