We report on a GaSb-based superluminescent diode optimized for high-power broadband operation around a wavelength of 2 μm. The high optical power was achieved by the high-quality epitaxial InGaSb/AlGaAsSb type-I quantum well gain material, which was processed into a double-pass amplification configuration. To prevent lasing at high current injection while enabling strong amplified spontaneous emission, a cascade cavity suppression waveguide geometry was designed to connect the vertical rear facet with the reflectivity-suppressed angled front facet. A Ta2O5/SiO2 ultra-low antireflection coating with a minimum reflectivity of 0.04% was applied to the front facet for further cavity suppression. This combination allowed the superluminescent diodes to demonstrate a record high single-transverse-mode output power of up to 152 mW under continuous-wave operation at room temperature, with a broad spectral band of 42 nm full width at half maximum. A 25% promotion in optical power has been realized compared to current state-of-the-art devices in this wavelength range, without sacrificing spectral bandwidth. The high-power spectral density characteristics, along with a good beam quality, are well suited for absorption spectroscopy applications and hybrid integration with silicon technology.
Read full abstract