Nanoscale hybrid dielectrics composed of an ultra‐thin polymeric low‐κ bottom layer and an ultra‐thin high‐κ oxide top layer, with high dielectric strength and capacitances up to 0.25 μFcm−2, compatible with low‐voltage, low‐power, organic electronic circuits are demonstrated. An efficient and reliable fabrication process, with 100% yield achieved on lab‐scale arrays, is demonstrated by means of pulsed laser deposition (PLD) for the fast growth of the oxide layer. With this strategy, high capacitance top gate (TG), n‐type and p‐type organic field effect transistors (OFETs) with high mobility, low leakage currents, and low subthreshold slopes are realized and employed in complementary‐like inverters, exhibiting ideal switching for supply voltages as low as 2 V. Importantly, the hybrid double‐layer allows for a neat decoupling between the need for a high capacitance, guaranteed by the nanoscale thickness of the double layer, and for an optimized semiconductor–dielectric interface, a crucial point in enabling high mobility OFETs, thanks to the low‐κ polymeric dielectric layer in direct contact with the polymer semiconductor. It is shown that such decoupling can be achieved already with a polymer dielectric as thin as 10 nm when the top oxide is deposited by PLD. This paves the way for a very versatile implementation of the proposed approach for the scaling of the operating voltages of TG OFETs with very low level of dielectric leakage currents to the fabrication of low‐voltage organic electronics with drastically reduced power consumption.
Read full abstract