Abstract

Ammonia (NH3) gas sensors based on organic field-effect transistor (OFET) using poly(methyl methacrylate) (PMMA) blending with zinc oxide (ZnO) nanoparticles as a gate dielectric layer were fabricated. Compared to those with the pure PMMA dielectric layer, the sensing properties of these devices using ZnO/PMMA hybrid as the gate dielectric layer were significantly improved when the sensors exposed to various concentrations of NH3, and the percentage response was nearly 10 folds higher than that using pure PMMA under 75ppm NH3. Also, the results showed that there was a remarkable shift in the threshold-voltage as well as a change in field-effect mobility after exposed to NH3 gas. By analyzing the morphologies of the dielectrics and pentacene films and the electrical characteristics of OFET, it was found that ZnO/PMMA hybrid gate dielectric layer was responsible for the enhanced sensing properties. Also, the decreased grain size of pentacene was formed on the ZnO/PMMA hybrid dielectric, facilitating NH3 to diffuse into the conducting channel and then interact with the ZnO nanoparticles. Moreover, the environmental stability of the OFET sensors was measured after storing the sensors under ambient atmosphere for 40 days.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.