A hydrogel wound dressing with a single functionality fails to meet the requirements for successful clinical treatment of chronic diabetic wounds that generally possess complicated microenvironments. A multifunctional hydrogel is thus highly desirable for improved clinical treatment. For this purpose, we reported herein construction of an injectable nanocomposite hydrogel with self-healing and photo-thermal properties as an antibacterial adhesive via dynamic Michael addition reaction and electrostatic interactions among three building moieties, i.e., catechol and thiol-modified hyaluronic acid (HA-CA and HA-SH), poly(hexamethylene guanidine) (PHMG), and black phosphorus nanosheets (BPs). An optimized hydrogel formulation eliminated over 99.99 % of bacteria (E. coli and S. aureus) and exhibited a free radical scavenging capability >70 % as well as photo-thermal properties in addition to viscoelastic characteristics, degradation properties in vitro, good adhesion and self-adaptation capacity. Wound healing experiments in vivo further confirmed the better performance of the developed hydrogels than that of a commercially available dressing (Tegaderm™) in promoting the healing of infected chronic wounds by preventing wound infection, decreasing inflammation, supporting collagen deposition, facilitating angiogenesis, and improving granulation tissues formation in the wound sites. Overall, the HA-based injectable composite hydrogels developed herein represent promising multifunctional wound dressings for infected diabetic wound repair.
Read full abstract