SummaryWearable electronics are becoming increasingly important for medical applications as they have revolutionized the way physiological parameters are monitored. Ferroelectric materials show spontaneous polarization below the Curie temperature, which changes with electric field, temperature, and mechanical deformation. Therefore, they have been widely used in sensor and actuator applications. In addition, these materials can be used for conversion of human-body energy into electricity for powering wearable electronics. In this paper, we review the recent advances in flexible ferroelectric materials for wearable human energy harvesting and sensing. To meet the performance requirements for medical applications, the most suitable materials and manufacturing techniques are reviewed. The approaches used to enhance performance and achieve long-term sustainability and multi-functionality by integrating other active sensing mechanisms (e.g. triboelectric and piezoresistive effects) are discussed. Data processing and transmission as well as the contribution of wearable piezoelectric devices in early disease detection and monitoring vital signs are reviewed.
Read full abstract