In this study, we compared the physical properties of coconut fiber/polypropylene (PP) composite materials with coconut fiber as a reinforcing agent, produced through a hybrid injection molding process and a layered hot-pressing process. Through comparative experiments, the mechanical properties of both the hybrid injection-molded and layered hot-pressed materials were validated. The results indicated that, when using a coconut fiber content of 5%, the layered hot-pressed composite material exhibited optimal comprehensive performance. Specifically, its tensile strength reached 25.12 MPa, showing a 37.6% increase over that of pure PP materials of the same brand and batch. Its tensile modulus was 1.17 GPa, representing an 11.4% decrease. Additionally, its bending strength was 35.94 MPa, marking a 49.8% increase, and its bending modulus was 2.69 GPa, which is nearly double that of pure PP materials. Furthermore, through Creo modeling and an ANSYS simulation analysis, it was verified that this material could be applied to airbag covers in the field of automotive safety. This study confirmed that layered hot-pressed coconut fiber/PP composite materials exhibit superior mechanical properties to traditional materials and injection-molded composite materials, making them more suitable for airbag covers.
Read full abstract