A rotating detonation rocket engine (RDRE) with various convergent nozzles and chamber lengths is investigated. Three hundred hot-fire tests are performed using methane and oxygen ranging from equivalence ratio equaling 0.5–2.5 and total propellant flow up to 0.680 kg/s. For the full-length (76.2 mm) chamber study, three nozzles at contraction ratios ϵc = 1.23, 1.62 and 2.40 are tested. Detonation is exhibited for each geometry at equivalent conditions, with only fuel-rich operability slightly increased for the ϵc = 1.62 and 2.40 nozzles. Despite this, counter-propagation, i.e., opposing wave sets, becomes prevalent with increasing constriction. This is accompanied by higher number of waves, lower wave speed Uwv and higher unsteadiness. Therefore, the most constricted nozzle always has the lowest Uwv. In contrast, engine performance increases with constriction, where thrust and specific impulse linearly increase with ϵc for equivalent conditions, with a 27% maximum increase. Additionally, two half-length (38.1 mm) chambers are studied including a straight chamber and ϵc = 2.40 nozzle; these shortened geometries show equal performance to their longer equivalent. Furthermore, the existence of counter-propagation is minimized. Accompanying high-fidelity simulations and injection recovery analyses describe underlying injection physics driving chamber wave dynamics, suggesting the physical throat/injector interaction influences counter-propagation.