Boronic acids are the key compounds in Suzuki coupling reactions and in the detection of monosaccharides. The C-B bond cleavage deboronation is an important side reaction that lowers the Suzuki coupling reaction yield and even disables saccharide detection. Here, we report that protodeboronation occurs for 4-mercaptophenylboronic acid (MPBA) within narrow nanogaps between gold nanoparticles (AuNPs) and planar gold substrates. The irradiation of such nanoparticle-on-mirror (NPoM) systems at 785 nm drives the protodeboronation reaction to form benzenethiol (BT). Wavelength-dependence experiments, combined with dark-field single-particle scattering spectroscopy, reveal that excitation of the bonding dipole plasmon mode of the NPoM leads to the best efficiency. Among the excited plasmon decay pathways, the generation of hot charge carriers induces the protodeboronation of MPBA. The possibility of plasmonic thermal reactions is ruled out because external heating of the substrates does not cause the reaction to take place. A comparison of the reaction yield under ambient, Ar, and oxygen gas conditions reveals that hot charge carriers directly transfer to MPBA, which subsequently produces BT, but the presence of oxygen promotes the reaction by opening another hot-electron transfer channel. The protodeboronation reaction of MPBA is an important addition to the catalog of plasmon-driven chemical reactions, not only because the reaction is relevant to organic and analytical chemistry but also because it deepens our understanding of the hot carrier dynamics at the interface between plasmonic nanoparticles and molecules.