Abstract

The lifetimes of hot carriers have been predicted to be prolonged in small nanocrystals with an inter-level spacing larger than phonon energy. Nevertheless, whether such a phonon bottleneck is present in perovskite semiconductor nanocrystals remains highly controversial. Here we report compelling evidence of a phonon bottleneck in CsPbI3 nanocrystals with marked size-dependent relaxation of hot carriers by using broadband two-dimensional electronic spectroscopy (2DES). By combining high resolutions in both the time (<10 fs) and excitation energy domains, 2DES allows the clear disentanglement of the thermalization and cooling processes. The lifetime is over doubled for hot carriers when the average edge length of the nanocrystals decreases from 8.2 nm down to 4.6 nm. The confirmation of the phonon bottleneck effect suggests the feasibility of controlling hot carrier dynamics in perovskite semiconductors with nanocrystal size for potential applications of hot carrier devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call