In wind energy generation systems, ensuring high energy quality is critical but is often compromised due to the limited performance and durability of conventional regulators. To address this, this work presents a novel controller for managing the machine-side inverter of a single-rotor large wind turbine system using an induction machine-type generator. The proposed controller is designed using proportional, integral, and derivative error-based mechanisms, which fundamentally differ from traditional proportional-integral (PI) regulators. Key features of the proposed regulator include its simplicity, cost-effectiveness, ease of implementation, reduced number of gains, and rapid dynamic response.This regulator enhances the direct power control (DPC) approach, as it integrates two tailored controllers alongside a pulse width modulation strategy to manage the machine inverter. The DPC strategy incorporating the proposed controller was implemented and tested using MATLAB, with various simulations to evaluate its performance and effectiveness. The proposed regulator demonstrated a significant improvement over the PI regulator, with reductions in active power ripples of 69%, 61.70%, and 59.14% across different tests. Additionally, the steady-state error of reactive power was reduced by 54.84%, 85.23%, and 62.68%, and the total harmonic distortion of current decreased by 48.12%, 50.55%, and 56.05%. These results underscore the high efficiency, robustness, and effectiveness of the proposed controller in improving system performance compared to conventional PI regulators. The controller's outstanding performance makes it a promising solution for broader industrial applications.
Read full abstract