Abstract
The northern Taiwan Strait, characterized by deep waters and high wind energy density, presents significant potential for developing floating offshore wind turbines (FOWTs). However, the region is prone to typhoons, with substantial variations in wind speed and direction during typhoon eye passages, posing challenges to FOWT safety and performance. This study investigates the serviceability of a 10 MW FOWT installed offshore of Hsinchu under typical wind and wave conditions during the eye of Typhoon SOULIK. Wind and wave data were sourced from the ERA5 reanalysis database. Simulations were conducted using OrcaFlex 11.4c, which enables fully coupled dynamic analysis of the entire FOWT system, including the mooring system, platform, tower, turbine, and nacelle, facilitating accurate predictions of system behavior in complex offshore environments. This study evaluated scenarios of maximum wind speed, significant wave height, wind–wave misalignment, and minimum wind speed during typhoon eye passage, considering both idle and power production modes in accordance with IEC TS 61400-3-2 requirements. The results indicate that platform yaw motion exceeds IEC limits during typhoon events, particularly in power production mode. This highlights the need for reducing platform motion. It is recommended to further develop control strategies or implement an active control system for the platform to ensure operational reliability. This research provides critical insights into FOWT design and operational challenges in typhoon-prone regions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have