Abstract
With the urgent demand for net-zero emissions, renewable energy is taking the lead and wind power is becoming increasingly important. Among the most promising sources, offshore wind energy located in deep water has gained significant attention. This review focuses on the experimental methods, simulation approaches, and wake characteristics of floating offshore wind turbines (FOWTs). The hydrodynamics and aerodynamics of FOWTs are not isolated and they interact with each other. Under the environmental load and mooring force, the floating platform has six degrees of freedom motions, which bring the changes in the relative wind speed to the turbine rotor, and furthermore, to the turbine aerodynamics. Then, the platform’s movements lead to a complex FOWT wake evolution, including wake recovery acceleration, velocity deficit fluctuations, wake deformation and wake meandering. In scale FOWT tests, it is challenging to simultaneously satisfy Reynolds number and Froude number similarity, resulting in gaps between scale model experiments and field measurements. Recently, progress has been made in scale model experiments; furthermore, a “Hardware in the loop” technique has been developed as an effective solution to the above contradiction. In numerical simulations, the coupling of hydrodynamics and aerodynamics is the concern and a typical numerical simulation of multi-body and multi-physical coupling is reviewed in this paper. Furthermore, recent advancements have been made in the analysis of wake characteristics, such as the application of instability theory and modal decomposition techniques in the study of FOWT wake evolution. These studies have revealed the formation of vortex rings and leapfrogging behavior in adjacent helical vortices, which deepens the understanding of the FOWT wake. Overall, this paper provides a comprehensive review of recent research on FOWT wake dynamics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have