For family x′=(a0+a1cost+a2sint)|x|+b0+b1cost+b2sint\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$x'=(a_0+a_1\\cos t+a_2 \\sin t)|x|+b_0+b_1 \\cos t+b_2 \\sin t$$\\end{document}, we solve three basic problems related with its dynamics. First, we characterize when it has a center (Poincaré center focus problem). Second, we show that each equation has a finite number of limit cycles (finiteness problem), and finally we give a uniform upper bound for the number of limit cycles (Hilbert problem 16).