Abstract

We present several results on the determination of the number and distribution of limit cycles or centers for planar systems of differential equations. In most cases, the study of a recurrence is one of the key points of our approach. These results include the counting of the number of configurations of stabilities of nested limit cycles, the study of the number of different configurations of a given number of limit cycles, the proof of some quadratic lower bounds for Hilbert numbers and some questions about the number of centers for planar polynomial vector fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.