Abstract

Christopher in 2006 proved that under some assumptions the linear parts of the Lyapunov constants with respect to the parameters give the cyclicity of an elementary center. This paper is devoted to establish a new approach, namely parallelization, to compute the linear parts of the Lyapunov constants. More concretely, it is shown that parallelization computes these linear parts in a shorter quantity of time than other traditional mechanisms.To show the power of this approach, we study the cyclicity of the holomorphic center z˙=iz+z2+z3+⋯+zn under general polynomial perturbations of degree n, for n≤13. We also exhibit that, from the point of view of computation, among the Hamiltonian, time-reversible, and Darboux centers, the holomorphic center is the best candidate to obtain high cyclicity examples of any degree. For n=4,5,…,13, we prove that the cyclicity of the holomorphic center is at least n2+n−2. This result gives the highest lower bound for M(6),M(7),…,M(13) among the existing results, where M(n) is the maximum number of limit cycles bifurcating from an elementary monodromic singularity of polynomial systems of degree n. As a direct corollary we also obtain the highest lower bound for the Hilbert numbers H(6)≥40, H(8)≥70, and H(10)≥108, because until now the best result was H(6)≥39, H(8)≥67, and H(10)≥100.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.