Self-assembly of multichips with metal microbump electrodes is demonstrated by using water surface tension to increase the stacking throughput/yield and chip alignment accuracy of conventional chip-to-wafer 3-D integration. Three-dimensional microbump interconnects are formed by self-assembly with thermal compression at 200 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$^{\circ}\hbox{C}$</tex></formula> . Chips with In–Au microbumps with pitches of 10 and 20 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu\hbox{m}$</tex></formula> are tightly bonded to Si wafers after the flip-chip self-assembly process, resulting in high alignment accuracies of 0.8 and 0.2 <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\mu\hbox{m}$</tex></formula> in the <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$x$</tex> </formula> - and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$y$</tex></formula> -directions, respectively. Selective hydrophilization by 172-nm excimer lamp irradiation gives a high wettability contrast between hydrophilic chip bonding areas and hydrophobic surrounding areas on the wafers. This assists high-precision multichip self-assembly. A 2500-In–Au-microbump daisy chain is formed with a yield of 100% by flip-chip self-assembly, and it exhibits ohmic contact. The resistance is sufficiently low for 3-D large-scale integration application, being comparable to that obtained by conventional mechanical chip alignment.
Read full abstract