Understanding detailed hemodynamics is critical in the treatment of aneurysms and other vascular diseases; however, traditional digital subtraction angiography (DSA) does not provide detailed quantitative flow information. Instead, 1000 fps High-Speed Angiography (HSA) can be used for high-temporal visualization and evaluation of detailed blood flow patterns and velocity distributions. In the treatment of aneurysms, flow diverter expansion and positioning play a critical role in affecting the hemodynamics and optimal patient outcomes. Patient-specific aneurysm phantom imaging was done with a CdTe photon-counting detector (Aries, Varex). Treatment was done with a Pipeline Flex Embolization Device on a 3D-printed fusiform aneurysm phantom. The untreated aneurysm and two treatment stent expansions and positions were imaged, and velocity calculations were generated using Optical Flow (OF). Pre- and post-treatment images were then compared between different HSA image sequences and evaluated using OF with different stent positions. Differences in flow patterns due to changes in stent placement characteristics were identified and quantified with OF velocimetry. The velocity results within the aneurysm post-treatment showed significant flow reduction. Differences in stent placement result in substantial changes in velocities. The peak velocities found in the aneurysm dome show a reduction with the widened stent placement compared to the narrowed placement and both are reduced compared to the untreated aneurysm. The stent placements were compared quantitatively with the adjusted widened stent clearly better diverting the flow away from the aneurysm with decreased velocity in the aneurysm dome compared to both the narrowed stent placement and the untreated aneurysm. Providing this information in-clinic can help improve treatment and patient outcomes.
Read full abstract