Abstract
Left ventricular assist device (LVAD)-induced hemodynamics are characterized by fast-moving flow with large variations in velocity, making quantitative assessments difficult with existing imaging methods. This study demonstrates the ability of 1,000 fps high-speed angiography (HSA) to quantify the effect of the surgical implantation angle of a LVAD outflow graft on the hemodynamics within the ascending aorta in vitro . High-speed angiography was performed on patient-derived, three-dimensional-printed optically opaque aortic models using a nonsoluble contrast media, ethiodol, as a flow tracer. Outflow graft configuration angles of 45° and 90° with respect to the central aortic axis were considered. Projected velocity distributions were calculated from the high-speed experimental sequences using two methods: a physics-based optical flow algorithm and tracking of radio-opaque particles. Particle trajectories were also used to evaluate accumulated shear stress. Results were then compared with computational fluid dynamics (CFD) simulations to confirm the results of the high-speed imaging method. Flow patterns derived from HSA coincided with the impingement regions and recirculation zones formed in the aortic root as seen in the CFD for both graft configurations. Compared with the 45° graft, the 90° configuration resulted in 81% higher two-dimensional-projected velocities (over 100 cm/s) along the contralateral wall of the aorta. Both graft configurations suggest elevated accumulated shear stresses along individual trajectories. Compared with CFD simulations, HSA successfully characterized the fast-moving flow and hemodynamics in each LVAD graft configuration in vitro , demonstrating the potential utility of this technology as a quantitative imaging modality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have