Abstract

Previous studies have demonstrated the efficacy of contrast dilution gradient (CDG) analysis in determining large vessel velocity distributions from 1000 fps high-speed angiography (HSA). However, the method required vessel centerline extraction, which made it applicable only to non-tortuous geometries using a highly specific contrast injection technique. This study seeks to remove the need for a priori knowledge regarding the direction of flow and modify the vessel sampling method to make the algorithm more robust to non-linear geometries. 1000 fps HSA acquisitions were obtained in vitro with a benchtop flow loop using the XC-Actaeon (Varex Inc.) photon-counting detector, and in silico using a passive-scalar transport model within a computational fluid dynamics (CFD) simulation. CDG analyses were obtained using gridline sampling across the vessel, and subsequent 1D velocity measurement in both the x- and y-directions. The velocity magnitudes derived from the component CDG velocity vectors were aligned with CFD results via co-registration of the resulting velocity maps and compared using mean absolute percent error (MAPE) between pixels values in each method after temporal averaging of the 1-ms velocity distributions. Regions well-saturated with contrast throughout the acquisition showed agreement when compared to CFD (MAPE of 18% for the carotid bifurcation inlet and MAPE of 27% for the internal carotid aneurysm), with respective completion times of 137 seconds and 5.8 seconds. CDG may be used to obtain velocity distributions in and surrounding vascular pathologies provided the contrast injection is sufficient to provide a gradient, and diffusion of contrast through the system is negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.