Glycosylation of metabolites serves multiple purposes. Adding sugars makes metabolites more water soluble and improves their biodistribution, stability, and detoxification. In plants, the increase in melting points enables storing otherwise volatile compounds that are released by hydrolysis when needed. Classically, glycosylated metabolites were identified by mass spectrometry (MS/MS) using [M-sugar] neutral losses. Herein, we studied 71 pairs of glycosides with their respective aglycones, including hexose, pentose, and glucuronide moieties. Using liquid chromatography (LC) coupled to electrospray ionization high-resolution mass spectrometry, we detected the classic [M-sugar] product ions for only 68% of glycosides. Instead, we found that most aglycone MS/MS product ions were conserved in the MS/MS spectra of their corresponding glycosides, even when no [M-sugar] neutral losses were observed. We added pentose and hexose units to the precursor masses of an MS/MS library of 3057 aglycones to enable rapid identification of glycosylated natural products with standard MS/MS search algorithms. When searching unknown compounds in untargeted LC-MS/MS metabolomics data of chocolate and tea, we structurally annotated 108 novel glycosides in standard MS-DIAL data processing. We uploaded this new in silico-glycosylated product MS/MS library to GitHub to enable users to detect natural product glycosides without authentic chemical standards.