The core of the Santander Massif in the northern Andes of Colombia is dominated by migmatitic gneisses with a <1.71Ga protolith and was affected by continuous interactions of oceanic plates to the west and the northwestern corner of the South American continental plate. The exposed metamorphic core of the massif offers a unique opportunity to understand the tectonic evolution of northwestern South America. We present new metamorphic petrology and geochemistry data from the Bucaramanga Gneiss in the Santander Massif to document part of this tectonic evolution from late Proterozoic to Jurassic times.Metapelitic migmatite gneiss, quartz-feldspathic gneiss, and amphibolite from the Bucaramanga Gneiss recorded metamorphic peak conditions in the range of 660–850°C at pressures of >7.5kbar. Lithologies are overprinted by low-pressure metamorphism, related to extensive Jurassic intrusions and linked with growth of cordierite and equilibration of low-pressure mineral assemblages, recorded metamorphic conditions are <750°C and <6.5kbar.Observed leucosomes display significant compositional variations and can be grouped in three groups: i) Group One leucosomes with high total REE content, high LREE/HREE, and negative Eu anomaly, ii) Group Two leucosomes with low total REE, low LREE/HREE, and positive Eu anomalies, and iii) Group Three leucosomes with relatively low LREE/HREE and strong positive Eu anomaly. Geochemical data support the interpretation that Group Two leucosomes crystallized from melts originated in a partial melting event affecting mostly pelitic and quartz-feldspathic lithologies with fluid-present melting reactions. The evaluation of mesosomes (amphibolite, pelitic and quartz-feldspathic rocks) as potential protoliths or restites indicates that at least two pelitic samples of the analyzed lithologies have characteristics consistent with the occurrence of fluid-present melting reactions involving quartz and feldspar. The leucosomes produced by crystallization of modified partial melts contrast with several other leucosomes that were injected; however, in some cases the melts crystallized as injected leucosomes show consistent geochemistry with partial melting of lithologies geochemically similar to the ones observed in the unit.The migmatization and the low pressure metamorphic overprint are related here to two main tectonic events: an early Paleozoic tectonic pulse produced by subduction of the oceanic crust of the Iapetus Ocean beneath northwestern Gondwana, and an Upper Triassic to Lower Jurassic tectonic pulse produced by subduction of oceanic crust of the proto-Pacific ocean beneath western Pangaea.
Read full abstract