Abstract

Abstract. Epidote/allanite–fluorapatite coronae around monazite and xenotime are investigated in Permian pegmatites deformed under greenschist-facies conditions during Alpine tectonometamorphism in the Austroalpine basement, Eastern Alps. The aim was to evaluate the replacement reactions involved in the formation of a corona microstructure, its age and relation to deformation. In the corona core, monazite and xenotime single crystals show domains with different composition and age. Monazite (Mnz1) and xenotime (Xen1) dating by electron microprobe (EPM) reveals an age of 250–287 Ma, consistent with the Permian magmatic age of the pegmatites. These are partly replaced by secondary monazite (Mnz2) and xenotime (Xen2) compositions yielding younger Mesozoic (170–210 Ma) and Alpine (30–120 Ma) ages. The same crystallographic orientation of the primary and secondary monazite and xenotime indicates interface-coupled dissolution–precipitation reactions. Allanite U–Th–Pb dating by laser ablation inductively coupled mass spectrometry in the corona revealed an age of 60±6 Ma, interpreted as the age of corona formation. The coronae around monazite consist of an inner zone of equant fluorapatite grains surrounded by prismatic allanite, which are surrounded by epidote enriched in heavy rare earth elements (HREEs) and REE-poor epidote grains. Compared to coronae around monazite, fluorapatite has higher REE contents and no allanite occurs in the coronae surrounding the xenotime. General reactions for monazite and xenotime breakdown can be written as follows: Mnz1+(Si,Ca,Al,Fe,F)fluid→Mnz2+LREE-Ap+Aln+HREE-Ep+Ep+(Th,U)O2+(Th,U)SiO4,Xen1+(Si,Ca,Al,Fe,F)fluid→Xen2+HREE-Ap+HREE-Ep+Ep+(Th,U)O2. The amount of replacement (judged by the relative proportions of monazite and fluorapatite) is low for monazite included in tourmaline but high within the mylonitic foliation. This dependence on the degree of replacement on the local surrounding microfabric indicates that fluid availability along grain boundaries in the matrix and cracks controlled reaction advancement, allowing the elementary mass transfer required for corona formation (e.g. input of Ca, Al, Si, Fe, F). The oblate shape of the coronae aligned within the foliation of the pegmatites and the deflected foliation around the coronae, without an outer rim of prismatic epidote showing signs of deformation, indicate that the main stage of corona formation took place during deformation and reactions were still ongoing after the main stage of deformation. The corona microstructure documents replacement reactions of a single reactant into multiple distinct mineral growth zones by dissolution and precipitation processes at non-isostatic, greenschist-facies conditions, which prevailed in the area to the north of the Defereggen–Antholz–Vals shear zone between the middle Cretaceous and the Oligocene. These reactions ceased before being completed, and REE gradients within single grains within the corona and on the thin-section scale are preserved, which suggests restricted and/or episodic transport of REE in the fluid phase and/or availability of fluid.

Highlights

  • Understanding the behaviour of monazite and xenotime in metamorphic reactions during deformation is of great importance in metamorphic petrology

  • Thin sections were coated with a ∼ 5 nm thick carbon layer and imaged by backscattered electrons (BSEs) using a scanning electron microscope (Hitachi SU5000 at LMU Munich) equipped with an HKL NordlysNano high-sensitivity electron backscatter diffraction (EBSD) detector (Oxford Instruments)

  • LA-ICP-MS U/Th–Pb allanite ages of 50–60 Ma are interpreted as the age of corona formation

Read more

Summary

Introduction

Understanding the behaviour of monazite and xenotime in metamorphic reactions during deformation is of great importance in metamorphic petrology. One important application is for example the YAG thermometer using Y contents in garnet and monazite or xenotime (Pyle and Spear, 2000; Pyle et al, 2001). Since the Pb in both is mostly radiogenic, chemical dating methods, for example by electron microprobe (EMP), can be used (Montel et al, 1996; Williams et al, 2007; Suzuki and Kato, 2008). If these reactions can further be related to deformation during metasomatism and pressure–temperature (P –T ) conditions, U/Pb–Th dating of these minerals can give valuable information on the tectonometamorphic history of the rock

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call