There is a growing recognition that food waste (FW) comprises a significant amount of unused energy. Indeed, FW shows great potential to produce methane (CH4)-rich biogas via an anaerobic digestion (AD) process. Nevertheless, to ensure high AD process performance, deepening the knowledge of FW characteristics is required. Furthermore, the biogas yield is strongly influenced by several operational parameters. Taking into account the above, in the current study, based on the data in the literature, the physicochemical parameters of FW generated throughout the world are presented and discussed. In addition, the performance profile of the single-stage anaerobic mono-digestion process with the use of FW as a feedstock was investigated. The performed analysis clearly demonstrated that FW is characterized by significant variations in several parameters, such as pH, the total solid (TS) and volatile solid (VS) contents, the volatile solids to total solids ratio (VS/TS), soluble chemical oxygen demand (sCOD), the concentrations of VFAs and ammonium nitrogen (NH4+-N), and the carbon-to-nitrogen ratio (C/N). Moreover, it was shown that the selected operational parameters, such as temperature, pH, the ratio of food waste to inoculum (I) (FW/I), and the organic loading rate (OLR), may have the most significant impact on the performance of the single-stage anaerobic mono-digestion process. In addition, it was found that most of the experimental investigations presented in the literature were conducted on a laboratory scale. Hence, in future research, more effort should be made to determine the biogas yield with the use of full-scale systems. To summarize, it should be clearly highlighted that the analysis presented in this study may have important implications for the management and application of FW as feedstock for an anaerobic mono-digestion process on an industrial scale.
Read full abstract