Abstract

TC11 titanium alloy is widely used in the manufacture of key components such as blades of gas turbine and aero engine because of its high specific strength and good processing performance. In the case of gas turbine or aero engine, the fatigue performance of TC11 will directly determine the life of the turbine or engine, and the surface residual stress generated on the alloy during manufacturing often affects the fatigue life of the material. In this study, a new method of coupled electromagnetic treatment (CEMT) was applied to regulate the surface residual stress of the alloy after manufacturing, so as to improve the fatigue life of the TC11. The results show that after the CEMT, the residual compressive stress in the length direction and width direction increased by 63.7% and 56.0% respectively, the fatigue life of the TC11 is increased by 39.9%. The microstructure analysis shows that after CEMT, the width of fatigue striations is significantly reduced. This paper proposes that CEMT can be used as an effective method to adjust the residual stress of materials and improve the fatigue life of titanium alloys. The research is also relevant for improvement of the fatigue life of other alloy materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.