Biosensors have various potential applications in biomedical research and clinical diagnostic, especially in detection of biomolecules in highly diluted solutions. In this study, a high-performance Bloch surface wave biosensor was constructed for the detection of hemoglobin. The procedure consisted of designing a porous silicon-based Kretschmann configuration to ensure excitation of the Bloch surface wave. The performance of the resulting sensor was then optimized by adjusting the buffer layer parameters based on the impedance matching method. The results showed an increase in the quality factor and figure of merit of the biosensor as a function of the decrease in thickness and refractive index of the buffer layer. The combination of the two optimization methods resulted in the quality factor and figure of merit of the optimized biosensor reaching as high as Q = 6967.4 and FOM = 11050RIU-1, respectively. In sum, the designed biosensor with high performance looks promising for future detection of hemoglobin.
Read full abstract