Abstract

A facile hydrothermal route was used to synthesize silver nanoparticle (AgNP)-decorated microflower molybdenum disulfide (MoS2-MF) for bio-electrochemical platform fabrication to detect nonenzymatic glucose concentration. The morphologies of the materials were studied by scanning electron microscopy, and their structural characteristics were analyzed by X-ray diffractometry and energy-dispersive X-ray spectroscopy. The electrochemical characteristics of the AgNPs/MoS2-MF/PtE biosensor were studied by cyclic voltammetry. The obtained data indicated that the developed nonenzymatic glucose sensor has a large linear response between 1.0 and 15.0 mM, a limit of detection of as low as 1.0 mM, and a sensitivity of 46.5 μA nM−1 cm−2. The biosensor also displayed outstanding selectivity, stability, reproducibility, and repeatability. Additionally, the AgNPs/MoS2-MF/PtE biosensor was utilized to detect glucose concentration in real sample and showed practical application potential for glucose detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call