Abstract

Among the important needs of human societies is the elimination of environmental pollution and also the construction of high-performance and inexpensive biosensors. In this regard, the construction of multi-functional composites has been considered. A novel magnetic graphite carbon nitride decorated by tri-vanadium substituted Dawson-type heteropolytungstate nanocomposite (C3N4/Fe3O4@P2W15V3) effectively synthesized and characterized by prevalent functional analysis. The prepared nano-catalyst presents bi-functional usage involving photocatalytic removal of dyes (methylene blue, congo red and phenyl red) (around 98%) under visible light radiation and greatly sensitive colorimetric sensing of cysteine in an aqueous media. Moreover, synthesized nano-catalyst successfully recovered five times without any considerable deficiency on its photocatalytic ability. Further, Moreover, we propose a novel method for cysteine detection based on the C3N4/Fe3O4@P2W15V3 nanocomposite. This nanocomposite displayed a privileged catalytic feature for cysteine oxidation to extend a clock reaction of methylene blue as an indicator in the presence of NaBH4 in acidic solution. More importantly, this colorimetric sensing method of cysteine presents an easy, low-cost, selective, and rapid colorimetric assay with a detection limit value of 7.2μM in the acceptable linear range of 5-600μM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call