We report a single-step optical clearing method that is compatible with RNA fluorescence in situ hybridization (FISH) imaging. We previously demonstrated microscopy imaging with immunohistochemistry and genetic reporters using a technique called lipid-preserving refractive index matching for prolonged imaging depth (LIMPID). Our protocol reliably produces high-resolution three-dimensional (3D) images with minimal aberrations using high magnification objectives, captures large field-of-view images of whole-mount tissues, and supports co-labeling with antibody and FISH probes. We also custom-designed FISH probes for quail embryos, demonstrating the ease of fabricating probes for use with less common animal models. Furthermore, we show high-quality 3D images using a conventional fluorescence microscope, without using more advanced depth sectioning instruments such as confocal or light-sheet microscopy. For broader adoption, we simplified and optimized 3D-LIMPID-FISH to minimize the barrier to entry, and we provide a detailed protocol to aid users with navigating the thick and thin of 3D microscopy.