Abstract

This paper proposes a full-automatic high-efficiency Mueller matrix microscopic imaging (MMMI) system based on the tissue microarray (TMA) for cancer inspection for the first time. By performing a polar decomposition on the sample's Mueller matrix (MM) obtained by a transmissive MMMI system we established, the linear phase retardance equivalent waveplate fast-axis azimuth and the linear phase retardance are obtained for distinguishing the cancerous tissues from the normal ones based on the differences in their polarization characteristics, where three analyses methods including statistical analysis, the gray-level co-occurrence matrix analysis (GLCM) and the Tamura image processing method (TIPM) are used. Previous MMMI medical diagnostics typically utilized discrete slices for inspection under a high-magnification objective (20×-50×) with a small field of view, while we use the TMA under a low-magnification objective (5×) with a large field of view. Experimental results indicate that MMMI based on TMA can effectively analyze the pathological variations in biological tissues, inspect cancerous cervical tissues, and thus contribute to the diagnosis of postoperative cancer biopsies. Such an inspection method, using a large number of samples within a TMA, is beneficial for obtaining consistent findings and good reproducibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.