Abstract

We present the fabrication and implementation of low-cost optical quality 3D printed lenses, and their application as microscope objectives with different prescriptions. The imaging performance of the 3D printed lenses was benchmarked against commercially available optics including a 20 mm focal length 12.7 mm diameter NBK-7 plano-convex lens used as a low magnification objective, and a separate high magnification objective featuring three 6 mm diameter NBK-7 lenses with different positive and negative focal lengths. We describe the design and manufacturing processes to produce high-quality 3D printed lenses. We tested their surface quality using a stylus profilometer, showing that they conform to that of commercial glass counterpart lenses. The 3D printed lenses were used as microscope objectives in both brightfield and epi-fluorescence imaging of specimens including onion, cyanobacteria, and variegated Hosta leaves, demonstrating a sub-cellular resolution performance obtained with low-cost 3D printed optical elements within brightfield and fluorescence microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.