ObjectiveTo investigate (1) how current and pulse frequency of electrical stimulation (ES) as well as contraction mode (isometric, concentric, and eccentric) influence torque output and discomfort and (2) how familiarization by repeated ES sessions influences ratings of perceived discomfort. DesignAn experimental study, 3 sessions. SettingA university laboratory. ParticipantsEight healthy participants (5 men, 3 women; mean age 25.2 years; N=8). InterventionsParticipants completed 3 trial days, each including 17 electrically evoked thigh muscle contractions. On each trial day, the first 6 contractions consisted of 2 isometric, 2 concentric, and 2 eccentric muscle contractions randomly ordered with a fixed stimulation current and pulse frequency (200 mA, 20 Hz), while the remaining 11 muscle contractions were all isometric with randomly ordered combinations of current (100-250 mA) and pulse frequency (20-100 Hz). Main Outcome MeasuresTorque and perceived discomfort were measured for each ES-evoked contraction. ResultsOverall, the findings revealed that a higher stimulation frequency was associated with an increased torque without increased discomfort, while higher currents were associated with increases of both torque and discomfort. Contraction type did not influence level of discomfort, despite eccentric contractions eliciting higher torque compared with concentric and isometric contractions (P<.001). Finally, a significant familiarization to ES (P<.001) was observed after just 1 of 3 identical stimulation sessions. ConclusionsThe outlined data suggest that to elicit high torque levels while minimizing levels of discomfort in young subjects, eccentric muscle contractions evoked with a low stimulation current, and a high pulse frequency are preferable. Furthermore, a single familiarization session significantly lowers rating of perceived discomfort during ES.
Read full abstract