Abstract

Bone cutting is of importance in orthopaedic surgery but is also challenging due to its nature of brittleness—where severe mechanical and thermal damages can be introduced easily in conventional machining. Laser machining is a new technology that can allow for complex cut geometries whilst minimising surface defects i.e., smearing, which occur in mechanical methods. However, comparative studies on the influence of lasers with different pulse characteristics on necrotic damage and surface integrity have not been reported yet. This paper for the first time investigates the effects of laser type on the necrotic damage and surface integrity in fresh bovine cortical bone after ex-situ laser machining. Three lasers of different pulse widths, i.e., picosecond, nanosecond and continuous wave lasers have been investigated with different feed speeds tested to study the machining efficiency. The cutting temperature, and geometrical outputs have been measured to investigate the thermal influence on the cooling behaviour of the bone samples while high-speed imaging was used to compare the material removal mechanisms between a pulsed and continuous wave laser. Furthermore, an in-depth histological analysis of the subsurface has revealed that the nanosecond laser caused the largest necrotic depth, owing to the high pulse frequency limiting the dissipation of heat. It has also been observed that surface cracks positioned perpendicular to the trench direction were produced after machining by the picosecond laser, indicative of the photomechanical effect induced by plasma explosions. Therefore, the choice of laser type (i.e., in terms of its pulse width and frequency) needs to be critically considered for appropriate application during laser osteotomy with minimum damage and improved healing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.