PurposePolydactyly is a highly heterogeneous group of skeletal deformities in clinical and genetic background. The variation spectrum in Chinese sporadic polydactyly has not been comprehensively analyzed. To elucidate genetic variation spectrum and genotype-phenotype correlations in Chinese patients with polydactyly, we conducted comprehensive genetic analysis of patients nationwide using targeted sequencing. MethodsA total of 181 patients diagnosed with polydactylies were recruited. We designed a targeted capture panel for sequencing 721 genes that are associated with the pathogenesis of skeletal dysplasia. We performed rigorous variant- and gene-level filtrations to identify potentially damaging variants, followed by enrichment analysis and gene prioritization. ResultsA total of 568 deleterious variants of 293 genes were identified in 173 of 181 patients with a positive rate of 95.6% by targeted sequencing. For each sample, an average of 3.17 deleterious variants were identified. Especially, 14 pathogenic or likely pathogenic variants were identified in 10 genes in 14 patients out of the 181 patients, providing a positive molecular diagnostic rate of 7.7%. ConclusionTargeted sequencing analysis provides a high efficiency approach for the genetic diagnosis of polydactyly. This is the largest next generation sequencing study performed to date in patients with polydactyly and represents the genetic basis of polydactyly typically encountered in genetics clinics.
Read full abstract