Abstract

Protein kinases have been the focus of drug discovery research for many years because they play a causal role in many human diseases. Understanding the binding profile of kinase inhibitors is a prerequisite for drug discovery, and traditional methods of predicting kinase inhibitors are time-consuming and inefficient. Calculation-based predictive methods provide a relatively low-cost and high-efficiency approach to the rapid development and effective understanding of the binding profile of kinase inhibitors. Particularly, the continuous improvement of network pharmacology methods provides unprecedented opportunities for drug discovery, network-based computational methods could be employed to aggregate the effective information from heterogeneous sources, which have become a new way for predicting the binding profile of kinase inhibitors. In this study, we proposed a network-based influence deep diffusion model, named IDDkin, for enhancing the prediction of kinase inhibitors. IDDkin uses deep graph convolutional networks, graph attention networks and adaptive weighting methods to diffuse the effective information of heterogeneous networks. The updated kinase and compound representations are used to predict potential compound-kinase pairs. The experimental results show that the performance of IDDkin is superior to the comparison methods, including the state-of-the-art kinase inhibitor prediction method and the classic model widely used in relationship prediction. In experiments conducted to verify its generalizability and in case studies, the IDDkin model also shows excellent performance. All of these results demonstrate the powerful predictive ability of the IDDkin model in the field of kinase inhibitors. Source code and data can be downloaded from https://github.com/CS-BIO/IDDkin. Supplementary data are available at Bioinformatics online.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call