Abstract

Landfill disposal of municipal solid waste incineration fly ash (MIFA) presents significant environmental and economic burden. This study proposed a novel and high-efficiency approach for stabilisation/solidification (S/S) of MIFA by phosphate-modified calcium aluminate cement (CAC). Experimental results showed that the presence of Pb (the most leachable metal contaminant in the MIFA) retarded the early-stage reaction of CAC, resulting in an extension of setting time and a significant decline of compressive strength of CAC pastes. The incorporation of phosphate additives (10 wt% of binder), especially for trisodium phosphate, in CAC system effectively mitigated the negative impact of Pb on the CAC reaction and reduced the Pb leachability. Elemental mapping results illustrated that Pb2+ coordinated with phosphate to generate insoluble precipitates (e.g., Pb3(PO4)2). The S/S treated MIFA samples fulfilled the compressive strength and leachability requirements for on-site reuse. Overall, this study demonstrated that phosphate-modified CAC is a promising binder for S/S of hazardous MIFA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.