The use of mobile laser scanning for mapping forests has scarcely been studied in difficult forest conditions. In this paper, we compare the accuracy of retrieving tree attributes, particularly diameter at breast height (DBH), stem curve, stem volume, and tree height, using six different laser scanning systems in a managed natural boreal forest. These compared systems operated both under the forest canopy on handheld and unmanned aerial vehicle (UAV) platforms and above the canopy from a helicopter. The complexity of the studied forest sites ranged from easy to difficult, and thus, this is the first study to compare the performance of several laser scanning systems for the direct measurement of stem curve in difficult forest conditions. To automatically detect tree stems and to calculate their attributes, we utilized our previously developed algorithm integrated with a novel bias compensation method to reduce the overestimation of stem diameter arising from finite laser beam divergence. The bias compensation method reduced the absolute value of the diameter bias by 55–99%. The most accurate laser scanning systems were equipped with a Velodyne VLP-16 sensor, which has a relatively low beam divergence, on a handheld or UAV platform. In easy plots, these systems found a root-mean-square error (RMSE) of below 10% for DBH and stem curve estimates and approximately 10% for stem volume. With the handheld system in difficult plots, the DBH and stem curve estimates had an RMSE under 10%, and the stem volume RMSE was below 20%. Even though bias compensation reduced the difference in bias and RMSE between laser scanners with high and low beam divergence, the RMSE remained higher for systems with a high beam divergence. The airborne laser scanner operating above the forest canopy provided tree attribute estimates close to the accuracy of the under-canopy laser scanners, but with a significantly lower completeness rate for stem detection, especially in difficult forest conditions.