Abstract

Abstract Measuring and modelling the shape of tree stems is a fundamental component of forest inventory systems for both commercial and biological purposes. The change in diameter of the stem along its length (a.k.a. 'taper') is one of the most important and widely used means of predicting tree stem volume. Until recently, the options for obtaining accurate estimates of stem taper and developing stem taper models have been limited to measurements of felled trees or the use of optical dendrometers on standing live trees. Here, we tested both a tripod-mounted terrestrial laser scanner (TLS; a Focus 3D 120 of FARO Technologies, Inc., Lake Mary, FL, USA), and a mobile laser scanner (MLS; the ZEB1 of the GeoSLAM Ltd, Nottingham, UK) to measure tree diameters at various heights along the stem of 20 destructively harvested broadleaf and needleleaf species using the outer hull modelling method, for the purpose of developing individual-tree and species-specific taper models. Laser scanner specifications were a major factor determining stem taper measurement accuracy. The longer-range, low beam divergence TLS could estimate stem diameter to an average of 15.7 m above ground (about 79 per cent of the canopy height), while the shorter-range high beam divergence MLS could estimate an average of 11.5 m above ground (about 45 per cent of the canopy height). Stem taper error increased with respect to height above ground, with the TLS providing more consistent and reliable diameter measurements (root mean square error (RMSE) = 1.93 cm; 9.57 per cent) compared with the MLS (RMSE = 2.59 cm; 12.84 per cent), but both methods were nearly unbiased. We attribute ~60 per cent of the uncertainty in stem measurements to laser beam diameter and point density, showing positive and negative correlations, respectively. MLS was unable to converge on the two tested taper models but was found to be an efficient means of easily sampling diameters at breast height (DBH) and reconstructing stem maps in simple forest stands with trees greater than ~10 cm DBH. TLS provided precision stem diameter measurements that allowed for the creation of similar taper models for three out of the four study species. Future work should focus on evaluating MLS systems with improved specifications (e.g. beam divergence and range), since these instruments will likely lead to dramatic improvements in reliable estimates of forest inventory parameters, in line with the current TLS technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.