Abstract
The TCV tokamak contributes to physics understanding in fusion reactor research by a wide set of experimental tools, like flexible shaping and high power ECRH. A 1MW, 25 keV deuterium heating neutral beam (NB) has been installed in 2015 and it was operated from 2016 in SPC-TCV domestic and EUROfusion MST1 experimental campaigns (˜50/50%). The rate of failures of the beam is less than 5%.Ion temperatures up to 3.5 keV have been achieved in ELMy H-mode, with a good agreement with ASTRA predictive simulations. The NB enables TCV to access ITER-like βN values (1.8) and Te/Ti ˜1, allowing investigations of innovative plasma features in ITER relevant ELMy H-mode. The advanced Tokamak route was also pursued, with stationary, fully non-inductive discharges sustained by ECCD and NBCD reaching βN˜1.4–1.7.Real-time control of the NB power has been implemented in 2018 and presented together with the statistics of NB operation on the TCV. During commissioning, the NB showed unacceptable heating of the TCV beam duct, indicating a higher power deposition than expected on duct walls. A high beam divergence has been found by dedicated measurement of 3-D beam power density distribution with an expressly designed device (IR measurement on tungsten target).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.