Fatigue resistance at elevated temperatures is crucial for certifying aerospace structures additively manufactured by the laser beam powder bed fusion (PBF-LB) method with IN718 superalloy. This study employed a multi-step, supersolvus heat treatment process with hot isostatic pressing (HIP), called RHSA, to minimize pores and brittle phases. Stress intensity factor (△K) calculations using data from X-ray computed tomography and shape factors referencing finite element analysis (FEA) studies confirmed the suppression of △K below the threshold of conventional IN718 (∼5 MPa√m), shifting fatigue behavior to grain-structure-dominated. Despite a very high twin boundary (TB) fraction (>70%), fatigue tests at 450°C and R = 0.1 demonstrated low scatter. Slip trace analysis and high-resolution electron backscatter diffraction (EBSD) revealed that TB-induced strain concentration became prominent only at high △K, causing cracking at 45⁰ to the loading direction. The randomly oriented TBs with higher angles (60⁰) compared to high-angle grain boundaries (HAGBs) (30–40⁰) likely enhanced slip resistance and provided a net strengthening effect, which can explain the lower-than-average TB% along fracture paths. These insights suggest that a high TB fraction is not detrimental if fatigue stress is not excessive, alleviating concerns about annealing twins during defect minimization in AM IN718, allowing novel processes to improve fatigue resistance in PBF-LB IN718.
Read full abstract